
Use of Probabilistic Statistical Techniques in AERMOD 

Modeling Evaluations 
 

A&WMA’s 108th Annual Conference & Exhibition, Raleigh, NC, 2015 

Paper #207 

 
Sergio A. Guerra 

CPP, Inc., 2400 Midpoint Drive, Suite 190, Fort Collins, CO 80525 

Jesse Thé  

Lakes Environmental, 60 Bathurst Drive, Unit 6, Waterloo, Ontario N2V 2A9, Canada 

 

ABSTRACT 

The advent of the short term National Ambient Air Quality Standards (NAAQS) prompted 

modelers to reassess the common practices in dispersion modeling analyses.  The probabilistic 

nature of the new short term standards also opens the door to alternative modeling techniques 

that are based on probability.  One of these is the Monte Carlo technique that can be used to 

account for emission variability in permit modeling.  

Currently, it is assumed that a given emission unit is in operation at its maximum capacity every 

hour of the year.  This assumption may be appropriate for facilities that operate at full capacity 

most of the time.  However, in most cases, emission units operate at variable loads that produce 

variable emissions. Thus, assuming constant maximum emissions is overly conservative for 

facilities such as power plants that are not in operation all the time and which exhibit high 

concentrations during very short periods of time.  

Another element of conservatism in NAAQS demonstrations relates to combining predicted 

concentrations from the AMS/EPA Regulatory Model (AERMOD) with observed (monitored) 

background concentrations.  Normally, some of the highest monitored observations are added to 

the AERMOD results yielding a very conservative combined concentration. 

A case study is presented to evaluate the use of alternative probabilistic methods to complement 

the shortcomings of current dispersion modeling practices.  This case study includes the use of 

the Monte Carlo technique and the use of a reasonable background concentration to combine 

with the AERMOD predicted concentrations.  The use of these methods is in harmony with the 



probabilistic nature of the NAAQS and can help demonstrate compliance through dispersion 

modeling analyses, while still being protective of the NAAQS.   

INTRODUCTION 

Annual ambient standards have historically been addressed with deterministic methods.  Under 

these standards, the highest predicted concentration is compared to a set threshold.  However, 

this paradigm has changed with short term probabilistic NAAQS.  Instead of comparing the 

maximum value to a given threshold, with probabilistic standards we compare a percentile value 

from the predicted concentrations to a specific threshold. For example, for the 1-hour SO2 

NAAQS, the high-fourth-high (H4H) predicted concentration is compared to the 1-hour NAAQS 

of 196 g/m
3
. That is the case because the distribution of maximum hourly values each day is 

equal to 365 values (one per day) and the 99
th

 percentile value from such a distribution is the 

3.6
th

 highest value which rounds to 4
th

 highest value also referred to as the high-fourth-high 

(H4H).  The aim of probabilistic standards is to reduce the likelihood of concentrations 

exceeding a threshold.  This means that for a modeling evaluation with a H4H concentration at 

the level of the 1-hour SO2 NAAQS, the likelihood of exceeding 196 g/m
3
 is less than 1% (1.0-

0.99).  Thus, probabilistic standards provide a stringent level of protection based on the 

likelihood of complying with the NAAQS.  The switch from deterministic to probabilistic 

standards allows for alternative modeling techniques that are based on probability. 

Whereas the use of probability in modeling demonstrations may seem foreign in dispersion 

modeling, probability has been used for a long time to evaluate AERMOD’s performance.  

Additionally, EPA allows the use of probabilistic methods such as the Monte Carlo approach in 

other fields including health risk assessments.  More recently EPA used this method in the 

modeling guidance for 1-hour SO2 non-attainment designations.  With this in mind, the use of 

the Monte Carlo statistical technique for permitting dispersion modeling evaluations should also 

be allowed.  Justification for the use of a reasonable background concentration to combine with 

the AERMOD predicted concentrations is included in this analysis.  The use of these two 

methods is in line with the probabilistic nature of the short term NAAQS and can help 

demonstrate compliance through dispersion modeling analyses while still being protective of the 

NAAQS.   



AERMOD’s Probabilistic Performance Evaluations 

The American Meteorological Society/Environmental Protection Agency Regulatory Model 

(AERMOD) was rigorously evaluated before it was incorporated by EPA as the preferred near-

field dispersion model for regulatory applications in the Guideline on Air Quality Models 

(Appendix W to 40 CFR Part 51).  These evaluations involved comparisons between predicted 

(modeled) and observed (monitored) concentrations from 17 studies.  The databases from these 

studies are available in EPA’s Support Center for Regulatory Atmospheric Modeling.
1
  

EPA employed Quantile-Quantile (Q-Q) plots to evaluate AERMOD’s performance for 

predicting compliance with air quality regulations.
2
  These plots compare predicted and observed 

concentrations from the databases available.  While these values are originally paired in time and 

space, the spatial and temporal alignment is lost in the ranking process.  That is the case because 

Q-Q plots compare the sorted list of predicted concentrations with the sorted list of observed 

concentrations.   

A more rigorous test would involve comparing predicted and observed concentrations on a 

scatterplot with data paired in time and space.  However, AERMOD has been shown to have 

poor correlation on a spatial and temporal basis. 
3-7

  Nonetheless, EPA uses Q-Q plots to evaluate 

model performance because the distribution of maximum and minimum values tends to follow a 

similar pattern between predicted and observed concentrations.  This means that, whereas the 

model is not able to predict the exact location and the exact time of a maximum concentration, 

the model is able to provide with good accuracy the likelihood of experiencing a maximum 

occurrence within a given time period (5 years or 1 year if using on-site meteorological data).  

Section 9.1.2 Studies of Model Accuracy from Appendix W summarizes this as follows: 

Models are reasonably reliable in estimating the magnitude of highest concentrations 

occurring sometime, somewhere within an area. 

This means that we cannot assume that the highest concentration obtained with AERMOD will 

be located at the exact receptor and at the exact time identified by AERMOD.  On the other 

hand, measured concentration distribution is similar to the one predicted in AERMOD.  Thus, it 

should be recognized that the results from AERMOD are probabilistic in nature.  With this in 



mind, the EPA has established probabilistic standards (e.g., 98
th

 percentile) for the new NAAQS 

(e.g., 1-hour NO2, 24-hour PM2.5).   

Regardless of the lack of temporal and spatial correlation between predicted and observed 

concentrations, AERMOD is able to predict the likelihood of exceedances happening in a given 

receptor grid over a given period of time (e.g., 5 years).  

Monte Carlo Statistical Technique 

The Monte Carlo technique is the probabilistic technique proposed to address some of 

AERMOD’s conservative assumptions is.  Numerous fields of science and industry widely use 

and accept this statistical procedure.  The Manhattan Project scientists developed this statistical 

approach in the 1940’s to estimate neutron multiplication rates to predict the explosive behavior 

of neutron chain reactions in fission weapons.
8
  The EPA already has a long standing policy in 

place to allow Monte Carlo analyses in risk assessments.
9,10,11

  More recently, EPA pioneered the 

use of the Monte Carlo technique in its evaluation included in the  Guidance for 1-hr SO2 

Nonattainment Area SIP Submissions.
12

  In Appendix B of this guidance EPA introduces the 

concept of using of a longer term average emission limit to be comparable in stringency with the 

1-hour average limit.  EPA performed a Monte Carlo analysis to justify this approach by using 

100 randomly reassigned emission data and single years of emissions data to characterize 

emission variability over a 5‐year period of meteorology.  This evaluation concluded that if 

periods of hourly emissions above the critical emission value were rare occurrences at a source, 

these periods would be unlikely to have a significant impact on air quality, insofar as they would 

be very unlikely to occur repeatedly at the times when the meteorology is conducive for high 

ambient concentrations.  In other words, the method outlined by EPA allows for sporadic 

emission spikes that would not be allowed with a 1‐hr limit, but compensates by adopting a 

lower average emission rate over a longer averaging time such that the likelihood (probability) of 

having high emissions and poor dispersion characteristics is minimized.  

Emission Variability Processor (EMVAP) 

The Electric Power Research Institute (EPRI) commissioned the EMVAP technique a tool to 

incorporate the transient and variable operations of emission units in a modeling analysis.  



EMVAP employs the Monte Carlo statistical technique, which as discussed earlier, has been 

allowed by EPA for risk assessments and 1-hr SO2 non-attainment modeling.  EMVAP creates a 

frequency distribution from given emission sources by assigning emission rates from a pool of 

emissions (usually from CEMS data) at random over numerous iterations.  The resulting 

distribution yields a more realistic approximation of actual modeled impacts. EMVAP has been 

evaluated extensively
13-15

 for dispersion modeling applications.  

The assumption of constant emissions is not appropriate for emission units that operate 

infrequently, at variable loads, or that have infrequent high emissions.  For these cases the 

EMVAP probabilistic approach is more suitable to accurately characterize the effect from these 

emission profiles.  

Combining Background Concentrations in NAAQS Modeling Evaluations 

Background concentrations are commonly obtained from representative ambient monitors. 

However, most of these monitors are sited to capture maximum impacts in a given area
16

.  Thus, 

finding ambient monitors that are truly representative of background levels of ambient air is 

challenging.  Additionally, it is a common practice to pair predicted concentration from 

AERMOD with maximum recorded observation from the ambient monitor.  EPA made some 

concessions on this practice
17,18

 and now allows a Tier 2 approach where a reduced subset of 

monitored observations are grouped by seasons and combined with predicted AERMOD 

concentrations on a seasonal basis.  This approach assumes that AERMOD concentrations are 

sufficiently correlated with monitored concentrations on a temporal basis (hour by hour). 

However, as discussed previously, AERMOD results are evaluated irrespective of time and space 

(i.e., with Q-Q plots) since model performance significantly decreases when analyzed on a 

temporal basis
3-7

.  Thus, temporal pairing of modeled and monitored concentrations is 

unjustified.  

Screening of Background Concentrations  

When meteorological data is available, it may be possible to exclude the monitored observations 

that occur when the monitor is being impacted from these sources.   



Nicholson
19

 described a screening technique to obtain a representative background concentration 

by analyzing hourly PM2.5 monitored data from the Santa Fe, New Mexico airport monitoring 

site.  Nicholson screened out monitoring observations from unusual events and occurrences 

when the monitor was downwind of a major emission source.  After screening out exceptional 

events, the resulting 98
th

 percentile concentration was 6 g/m
3
 compared to 18 g/m

3 
obtained 

from the unscreened data set.  Nicholson cautioned against the use of background concentrations 

based upon extreme values since these are not representative of the background in a dispersion 

modeling domain.  

 

The EPA defines exceptional events as unusual or naturally occurring events that can affect air 

quality but are not reasonably controllable.
20

  However, the flagging of exceptional events is only 

performed by State agencies when there are attainment issues.  Therefore, the data collected from 

these monitors contains observations that overpredict background concentrations.  

 

The challenge in determining a representative background value is how to screen out the 

observations from times when the monitor is downwind from a given emission source to avoid 

double counting emissions.  However, it is possible to filter out the effects from explicitly 

modeled sources and exceptional events (e.g., forest fires, sand storms, etc.) by analyzing the 

distribution of monitored observations as proposed below.  

Combining Modeled Results and Background Concentrations 

 The 1-hour SO2 NAAQS was promulgated as the 99
th

 percentile of maximum daily 

concentrations.  Thus, the probability of this standard is 1.00 - 0.99 = 0.01.  This is equivalent to 

1 exceedance every 100 days (1/100 = 0.01).  When we extrapolate this ratio to the number of 

days in a year (365) we get 3.6 exceedances in a year which is rounded up to the 4th highest 

value in a year. Thus, the form of the standard is the high-fourth-high (H4H) value from the daily 

maximum 1-hour values across a year.  However, by assuming that the 99
th

 percentile modeled 

concentration is combined with the 99
th

 percentile background concentration, the probability 

equals 0.0001 or (0.01) * (0.01).  This is equivalent to the 99.99
th

 percentile or one exceedance 

every 10,000 days (1/10,000 = .0001), representing one exceedance every 27 years.  The 

probabilistic inappropriateness of such an approach has been described previously.
6
  



Furthermore, this degree of conservatism is well beyond the level necessary to protect the 

NAAQS.  

A more realistic approach in NAAQS dispersion modeling analyses is to combine AERMOD’s 

concentrations with the 50
th

 percentile background concentration.
21

  This approach conserves the 

use of the modeled 99
th

 percentile value from AERMOD and allows for a more representative 

background level by selecting the median instead of the tail of the distribution.  Additionally, this 

approach will still be protective of the NAAQS because it results in a marginal probability of 

0.005 or (0.01) * (0 .50).  This is equivalent to the 99.5
th

 percentile combined concentration 

which is more conservative than the 99
th

 percentile standard.  Therefore, this method is 

statistically sound and provides a reasonable level of conservatism that ensures the protection of 

the NAAQS.   

 

EXPERIMENTAL METHODS 

The current study evaluates the predicted concentrations based on three cases: 

1. Using AERMOD by assuming a constant maximum emission rate (current modeling 

practice) 

2. Using AERMOD by assuming a variable emission rate 

3. Using EMVAP to account for emission variability 

The modeling evaluation is based on one year of emission data from a power plant.  These data 

were scaled up for the following example. In other words, its emission profile is the same but the 

magnitude has been adjusted.  A graphical representation of the emission profile for this 

hypothetical power plant is shown in Figure 1. 

The assumptions and the modeling parameters for these cases are summarized in Table 1.  

AERMOD version 14134 was used with meteorological data processed for one year with 

AERMET version 12345.  The receptor grid is comprised of 1,080 polar receptors extending 

7,500 meters from the source.       

 

 



Table 1. Three cases used to model the power plant. 

Input parameter Case 1 Case 2 Case 3 

Description of 

Dispersion 

Modeling 

Current 

Modeling 

Practices  

AERMOD with 

hourly emission  

EMVAP  

(500 iterations) 

SO2 Emission rate 

(g/s) 
478.7 

Actual emission 

rates from 

CEMS data 

Bin1: 478.7  

(5.0% time)  

Bin 2: 228.7  

(95% time) 

Stack height (m) 122 

Exit temperature 

(degrees K) 
416 

Diameter (m) 5.2 

Exit velocity (m/s) 23 

 

Figure 1. Emission distribution by percentiles.

 

 

RESULTS AND DISCUSSION 

The results for the three cases described are summarized below (Table 2).  Case 1 produced the 

highest concentrations and exceeded the NAAQS.  This is not surprising given that Case 1 

assumes continuous emissions at the highest emission rate.  Case 2 resulted in the lowest 

concentration; about 40% of the NAAQS.  However, this is presented for comparison purposes 

only and should be viewed with caution because AERMOD has negligible correlation with 



monitored concentrations on a temporal basis.  Case 3 was calculated from 500 iterations in 

EMVAP and resulted in a 99
th

 percentile concentration that is 92% of the NAAQS.  These results 

do not include impacts from neighboring sources and background concentrations.  

Table 2. Results of 1-hour SO2 concentrations for the three cases. 

  
Case 1 

(µg/m
3
) 

Case 2 

(µg/m
3
) 

Case 3  

(µg/m
3
) 

Description of 

Dispersion 

Modeling 

Current 

Modeling 

Practices  

AERMOD 

with hourly 

emission  

EMVAP  

(500 iterations) 

H4H 229.9 78.6 179.3 

Percent of 

NAAQS 
117% 40% 92% 

 

Background Concentrations   

According to the Annual Air Monitoring Network Plan for Minnesota,
22

 the MPCA monitors 

SO2 at six sites.  The 2011-2013 average 99
th

 percentile 1-hr SO2 concentrations range from 5.2 

µg/m
3 

to 89.0 µg/m
3
.  Out of these, the Saint Paul Park 436 monitor was selected since it records 

the second highest three year average concentration (26.2 µg/m
3
).  The Saint Paul Park 436 

monitor is located about 9 miles southeast of downtown St. Paul, Minnesota.  The location is east 

of the Mississippi River and is surrounded by industrial land including an oil refinery (Figure 2).   

 



Figure 2. St. Paul Park 436 ambient monitor location.  

 
 

Hourly ambient air monitoring data was obtained from EPA’s Airdata web site
23

 for the Saint 

Paul Park 436 monitor for the years 2011 through 2013.  The monitoring data is recorded in parts 

per billion (ppb) and contained only the maximum hourly observations by day.  Therefore, there 

were 365 maximum hourly values for 2011 and 2013, and 366 maximum values for 2012 (leap 

year).  These values were analyzed to find a representative 1-hour background concentration.  

The observations were analyzed in the histogram below (Figure 3).  The histogram exhibits a 

long right tail due to few very high observations.  However, the most frequent observation 

recorded was 2.6 g/m
3
 (1 ppb) which occurred 40 percent of the time.  Table 3 presents the 

distribution of concentrations at different percentiles.  The Annual Air Monitoring Network Plan 

for Minnesota shows the three-year average of the annual 99
th

 percentile daily maximum 1-hour 

SO2 concentrations to be 10 ppb (about 26.2 g/m
3
), which is one order of magnitude higher 

than the most frequent observation (1 ppb).  Thus, from the histogram below, it is overly 

conservative to assume that a 10 ppb concentration is present every hour of the year. 



Figure 3. Histogram of 1-hour SO2 monitoring observations for the Saint Paul Park 436 

monitor for years 2011-2013. 

 

Table 3. Concentrations at different percentiles for the St. Paul Park 436 monitor.   

Percentile g/m
3
 

50th 2.6 

60th 3.5 

70th 5.2 

80th 6.1 

90th 9.6 

95th 12.9 

98th 20.1 

99th 25.6 

99.9th 69.5 

99.99th 84.7 

 

Case 3 was further analyzed by combining it with three background values that include the 

following: 
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1. Bkg 1: Three year average of maximum daily 1-hour SO2 observations. 

2. Bkg 2: Three year average of the 99
th

 percentile daily maximum 1-hour 

SO2 observations. 

3. Bkg 3: Three year average of the 50
th

 percentile daily maximum 1-hour 

SO2 observations. 

Bkg 1 is representative of the value initially recommended by EPA (Tier 1).  In more recent 

guidance
14

 EPA allowed the use of the three year average 99
th

 percentile daily maximum 

observations for the 1-hour SO2 concentrations.  However, as discussed previously, assuming 

that two exceptional events occur at the same time is excessively conservative.  Thus, the use of 

the 50
th

 percentile is a more reasonable assumption that was evaluated as Bkg 3.  The results in 

Table 4 show that Bkg 1 and Bkg 2 exceed the 1-hour SO2 NAAQS.  However, by assuming a 

more reasonable background concentration (i.e., Bkg 3), the 1-hour SO2 NAAQS are met in this 

hypothetical analysis. 

Table 4. Case 3 with three different background values. 

  
Case 3 with Bkg 1 

 (µg/m
3
)  

Case 3 with Bkg 2 

 (µg/m
3
) 

Case 3 with Bkg 3 

 (µg/m
3
) 

H4H 179.3 179.3 179.3 

Background 86.4 25.6 2.6 

Total 265.7 204.9 181.9 

Percent of NAAQS 135.6% 104.5% 92.8% 

 

SUMMARY 

The newly promulgated NAAQS herald a new era of dispersion modeling with its probabilistic 

nature. The use of probabilistic techniques is consistent with the evaluations performed to 

validate the use of AERMOD.  Combining the use of AERMOD with the Monte Carlo technique 

is appropriate when used to account for emission variability inherent in many emission sources. 

Furthermore, this technique is already allowed by EPA for risk assessments and more recently 

for modeling of non-attainment modeling of 1-hour SO2.  Consequently, the use of EMVAP to 

account for the emission variability of emission units allows for more reasonable results in 

dispersion modeling analyses.  EMVAP is especially useful in cases where the emission units 

evaluated have an infrequent use or variable load.  The use of this modeling technique can result 



in more reasonable predicted concentrations that are still protective of the NAAQS.  

Furthermore, as shown in this study, combining the 50
th

 percentile monitored concentration with 

the 99
th

 percentile predicted concentration (1-hr SO2) should be considered in regulatory 

applications.  In summary, more realistic results can be obtained from AERMOD by addressing 

emission variability with a Monte Carlo approach and by pairing predicted concentrations with 

the median observed values.  
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